
A Conical Branch-and-Bound Algorithm

for a Class of Reverse Convex Programs

Hidetoshi Nagai Takahito Kuno∗

Abstract

The purpose of this paper is to construct a conical branch-and-bound algo-
rithm for solving linear programming problems with an additional reverse con-
vex constraint. We propose an inexpensive bound-tightening procedure, which
is based on the surrogate relaxation. We show that this procedure considerably
tightens lower bounds yielded by the usual linear programming relaxation. We
also report numerical results, which indicate that the proposed algorithm is
much promising, compared with existing ones.

1 Introduction

Let us consider a class of reverse convex programs, i.e., linear programs with an
additional reverse convex constraint (LPARC). The feasible set of this class is a
difference of a polyhedron and an open convex set. We need to optimize a linear
function on such a nonconvex set, which might be disconnected. Therefore, LPARC
can have multiple locally optimal solutions, many of which fail to be globally opti-
mal. Although LPARC is just a subclass of the reverse convex program, it involves
a wide variety of problems (see e.g., [2]). Among others, of importance is the linear
complementarity problem: find x ∈ Rn such that

x ≥ 0, Mx + q ≥ 0, xT(Mx + q) = 0,

where M ∈ Rn×n and q ∈ Rn. Even this well-known problem is an instance of
LPARC: ∣∣∣∣∣∣∣∣∣

minimize z
subject to Mx− y = −q, (x,y) ≥ 0

z −
n∑

j=1

min{xj , yj} ≥ 0.

∗The author was partially supported by the Grand-in-Aid for Scientific Research (C) 17560050
from the Japan Society for the Promotion of Science.

2000 Mathematics Subject Classification. Primary 90C26, Secondary 90C57.
Key words and phrases. reverse convex program, global optimization, nonconvex optimization,

conical branch-and-bound algorithm, surrogate relaxation.

1

To solve LPARC, various algorithms have been proposed since the pioneer work
by Hillestad [1]. In this paper, we focus on the conical branch-and-bound algo-
rithm, which was originally proposed by Tuy [9] for concave minimization problems
and applied to LPARC later in, e.g., [6, 7]. In the bounding process, we usually
relax each subproblem into a linear program and solve it to obtain a lower bound
on the optimal value. We will show that the lower bound yielded by this linear
programming relaxation can be tighten considerably using a nonlinear surrogate
relaxation. Recently, it was reported in [4, 5] that a similar procedure works well in
simplicial branch-and-bound algorithms for concave minimization problems. After
giving our problem settings of LPARC in Section 2, we explain basic workings of
the standard conical branch-and-bound algorithm in Section 3. We then describe
the nonlinear surrogate relaxation and incorporate it into the branch-and-bound
algorithm in Section 4. Section 5 is devoted to a report of numerical results on the
proposed algorithm.

2 Problem settings

The problem we consider in this paper is the following LPARC:
∣∣∣∣∣∣

minimize cTx
subject to Ax + Dy = b, (x,y) ≥ 0

g(x) ≥ 0,
(2.1)

where A ∈ Rm×r, D ∈ Rm×(n−r), b ∈ Rm, c ∈ Rr, and g : Rr → R is a convex
function. In many applications, we can assume that r ≥ 0 is much smaller than n
because of the low-rank nonconvexity [3]. Low-rank-nonconvex structured instances
of LPARC are generally formulated into

∣∣∣∣∣∣

minimize cTx + dTy
subject to Ax + Dy = b, (x,y) ≥ 0

g(x) + hTy ≥ 0,
(2.2)

where d, h ∈ Rn−r and n >> r. If we introduce auxiliary variables ζ−, ζ+, η− and
η+, then (2.2) reduces to the form of (2.1):

∣∣∣∣∣∣∣∣∣∣

minimize cTx + ζ+ − ζ−
subject to Ax + Dy = b, (x,y) ≥ 0

ζ+ − ζ− − dTy = 0, (ζ−, ζ+) ≥ 0
η+ − η− − hTy = 0, (η−, η+) ≥ 0
g(x) + η+ − η− ≥ 0.

Let

F = {x ∈ Rr | ∃y ≥ 0, Ax + Dy = b, x ≥ 0}
G = {x ∈ Rr | g(x) < 0},

2

and assume that both F and G are bounded and have interior points. Then (2.1)
is embedded in the x-space as min{cTx | x ∈ F \ G}. We assume that at least
one optimal solution x◦ to the associated linear program min{cTx | x ∈ F} is a
point in G. This condition makes (2.1) nontrivial, but provides us with a valuable
information about its optimality [2, 10]:

Proposition 2.1. If F \G 6= ∅, there exists a globally optimal solution (x∗,y∗) to
(2.1) such that x∗ is located at the intersection of an edge of the polyhedron F with
the boundary of the set G.

For simplicity, we assume x◦ = 0 in the sequel.

3 Overview of the conical algorithm

In this section, we will overview the basic workings of the standard conical branch-
and-bound algorithm on (2.1) [2, 10].

Let ∆1 = {x ∈ Rr | x ≥ 0}. Then ∆1 is a cone vertexed at x◦ = 0 and includes
the polytope F . Starting from this cone ∆1, we recursively divide it into subcones,
each vertexed at x◦, satisfying

∆k = ∆2k ∪∆2k+1, int(∆2k) ∩ int(∆2k+1) = ∅, k = 1, 2, . . . ,

where int(·) denotes the interior. This procedure generates an infinite sequence
of cones {∆k` | ∆k` ⊃ ∆k`+1 , ` = 1, 2, . . . }. To guarantee the convergence of the
algorithm, we need to subdivide ∆1 in such an exhaustive manner that

⋂∞
`=1 ∆k`

becomes a half line emanating from x◦. Suppose that ∆k is spanned by r linearly
independent vectors wi ∈ Rr, i = 1, . . . , r, and denote ∆k = cone({w1, . . . ,wr}).
The easiest exhaustive subdivision rule is bisection, i.e., we may divide the longest
edge of ∆k = conv({w1, . . . ,wr}), say wp-wq, at a fixed ratio of α ∈ (0, 1/2], where
conv(·) denotes the convex hull. Letting w = (1− α)wp + αwq, then we have

∆2k = cone({wi | i 6= p} ∪ {w}), ∆2k+1 = cone({wi | i 6= q} ∪ {w}).

For each subcone ∆ = ∆k, we have a subproblem of (2.1):

P(∆)
∣∣∣∣

minimize cTx
subject to x ∈ (F \G) ∩∆.

This problem is essentially the same as (2.1) and cannot be solved directly. We
instead compute a lower bound on the optimal value of P(∆). If the bound is
greater than or equal to the value of the best feasible solution x∗ to (2.1) obtained
so far, we can discard P(∆) from further consideration. For each i = 1, . . . , r, let βi

be a positive number such that g(βiwi) = 0, and let

V = [v1, . . . ,vr], vi = βiwi.

3

Then we have ∆ = {x ∈ Rr | x = Vλ, λ ≥ 0}. We also see from the convexity of
g that

∆ \G ⊂ {x ∈ Rr | x = Vλ, eTλ ≥ 1, λ ≥ 0},
where e is an all-ones vector. This implies that a lower bound of P(∆) is given as
the optimal value of a linear program:

P(∆)

∣∣∣∣∣∣∣∣

minimize cTx
subject to Ax + Dy = b, y ≥ 0

x−Vλ = 0, λ ≥ 0
eTλ ≥ 1,

which is known as the linear programming relaxation of P(∆). Let (x,y) denote an
optimal solution to P(∆), and let z(P) = cTx.

4 Surrogate relaxation and the proposed algorithm

To tighten the lower bound z(P), we propose here a kind of surrogate relaxation of
P(∆).

Let us consider the dual problem of P(∆):
∣∣∣∣∣∣

maximize bTπ + η
subject to ATπ + ρ = c, DTπ ≤ 0

eη −VTρ ≤ 0, η ≥ 0.
(4.1)

We can obtain an optimal solution (π, η, ρ) to (4.1) as a byproduct in solving P(∆).
For this π ∈ Rm, let us define the following:

S(∆)

∣∣∣∣∣∣∣∣

minimize cTx
subject to πTAx + πTDy = πTb, (x,y) ≥ 0

x−Vλ = 0, λ ≥ 0
g(x) ≥ 0,

where x ≥ 0 is redundant and can be eliminated. Let us denote by z(S) the optimal
value of this problem.

Proposition 4.1. Between z(S) and z(P), there exists a relationship:

z(S) ≥ z(P).

Proof. Consider the linear programming relaxation of S(∆):
∣∣∣∣∣∣∣∣

minimize cTx
subject to πTAx + πTDy = πTb, y ≥ 0

x−Vλ = 0, λ ≥ 0
eTλ ≥ 1.

(4.2)

4

The dual of this problem is
∣∣∣∣∣∣

maximize bTπζ + η
subject to ATπζ + ρ = c, DTπζ ≤ 0

eη −VTρ ≤ 0, η ≥ 0.
(4.3)

Then (x,y) and (1, η, ρ) are feasible for (4.2) and (4.3), respectively. Moreover,
we have cTx = bTπ + η, and see that (x,y) and (1, η, ρ) are optimal for these
problems. Thus, even the relaxed problem of S(∆) has the same optimal value z(P)
as P(∆).

Problem S(∆) belongs to the same class of (2.1), but we can solve it in polyno-
mial time if the value of g is given by oracle. Let F ′ = {x ∈ Rr | πTAx ≥ πTb}∩∆.
Then we have x◦ ∈ argmin{cTx | x ∈ F ′}, and further

F ′ = {x ∈ Rr | ∃(y,λ) ≥ 0, πTAx + πTDy = πTb, x−Vλ = 0, x ≥ 0}

by noting DTπ ≤ 0 and y ≥ 0. We see from Proposition 2.1 that S(∆) has
an optimal solution (x̃, ỹ) such that x̃ lies on some edge of F ′. Since F ′ is an
intersection of the cone ∆ with r edges and a halfspace, the maximum number of
its edges is r(r + 1)/2. This implies that (x̃, ỹ) can be found if we evaluate g at
most O(r2) times.

We are now ready to give a detailed description of our proposed algorithm for
solving (2.1). Here, ε ≥ 0 is a given tolerance.

algorithm Conical BB
begin

∆1 := cone({e1, . . . , er}), where ei is the ith unit vector;
H := {∆1}; z∗ := +∞;
while H 6= ∅ do begin

select a cone ∆k ∈ H; H := H \ {∆k};
∆ := ∆k = cone({w1, . . . ,wr});
for i = 1, . . . , r do compute βi such that g(βiwi) = 0 and βi > 0;
V := [β1w1, . . . , βrwr];
let ∆ denote {x ∈ Rr | x = Vλ, λ ≥ 0};

/∗ bounding operation ∗/
solve P (∆), and obtain a lower bound zP ;
let (xk,yk,λk) be an optimal solution to P (∆);
if g(xk) ≥ −ε then begin

if zP < z∗ then z∗ := zP ; x∗ := xk; y∗ := yk

else if zP < z∗ then
define S(∆,π) for the dual optimal solution (π, η, ρ) to P (∆);
solve S(∆,π), and obtain a lower bound zS ;
search for a local optimal solution (x̃, ỹ, λ̃) to P (∆);
if cTx̃ < z∗ then z∗ := cTx̃; x∗ := x̃; y∗ := ỹ;
if zS < z∗ then begin

5

/∗ branching operation ∗/
select the longest edge wp–wq of conv({w1, . . . ,wr});
let w := (1− α)wp + αwq for a fixed ratio α ∈ (0, 1/2];
∆2k := cone({wi | i 6= p} ∪ {w});
∆2k+1 := cone({wi | i 6= q} ∪ {w});
H := H ∪ {∆2k,∆2k+1}

end
end

end
end;

We refer to (x,y) satisfying the following as an ε-feasible solution to (2.1):

Ax + Dy = b, (x,y) ≥ 0, g(x) + ε ≥ 0.

Theorem 4.2. If ε > 0, then algorithm Conical BB terminates after finitely many
iterations and yields an ε-feasible solution (x∗,y∗) to (2.1) such that cTx∗ ≤ cTx
for all (x,y) feasible to (2.1).

Proof. When Conical BB terminates in a finite number of iterations, the assertion
is obvious. Suppose that the algorithm does not terminate and generates an infinite
sequence of nested cones {∆k` | ∆k` ⊃ ∆k`+1 , ` = 1, 2, . . . } such that g(xk`) < −ε <
0, ` = 1, 2, Let vk`

i be the ith column of V for each ∆k` . Since
⋂∞

`=1 ∆k` is a
half line, we have vk`

i → v as ` →∞ for all i = 1, . . . , r, where g(v) = 0. Here, we
should notice that P(∆k`) is also an instance of LPARC because g′(x,λ) = eTλ− 1
is a convex function. Let

F ′ = {(x,λ) | ∃y ≥ 0, Ax + Dy = b, x−Vλ = 0, (x,λ) ≥ 0}
G′ = {(x,λ) | eTλ− 1 < 0}.

Then we have (x◦,λ◦) = (0,0) ∈ argmin{cTx | (x,λ) ∈ F ′} by assumption, and
besides (x◦,λ◦) ∈ G′. Therefore, for the optimal solution (xk` ,yk` ,λ

k`) of P(∆k`)
we have (xk` ,λ

k`) ∈ ∂G′ by Proposition 2.1, where ∂ · denotes the boundary; and
eTλ

k` = 1 holds for each ` = 1, 2, This means that xk` is given as convex
combination of vk`

i ’s, and then xk` → v as ` →∞. Therefore, we have g(xk`) → 0
as ` →∞, which is a contradiction.

5 Numerical results

In this section, we present numerical results of having compared our algorithm
incorporating the surrogate relaxation S(∆) with a standard algorithm only using
the linear programming relaxation P(∆). We refer to those codes as cbb s and
cbb lp, respectively. Both adopted the depth first rule in selecting ∆k ∈ H, α = 1/2,
ε = 10−4 and were written using GNU Octave (version 2.1.34) [8] and C++ (GCC
version 2.96) in part.

6

Table 5.1: Average numbers of branchig operations and CPU seconds

LP relaxation Surrogate relaxation
m, n, r branch time(sec) branch time(sec)
10, 30, 10 4031 58 489 8
10, 40, 10 10959 129 1687 23
10, 50, 10 21998 334 5177 91
20, 50, 10 9891 190 3062 50
30, 50, 10 11392 237 3179 67
10, 40, 15 (3) (3)
10, 40, 20 (7) (3)

The test problem we solved is as follows:
∣∣∣∣∣∣∣∣∣

minimize cTx
subject to Ax + [D′, I]y = e, (x,y) ≥ 0

r∑

j=1

γjx
2
j ≥ 1,

(5.1)

where I ∈ Rm×m is an identity matrix; e ∈ Rm is an all-ones vector; each component
in the last row of A ∈ Rm×r and D′ ∈ Rm×(n−r−m) was fixed at 1.0/(n − m),
and other componets of [A,D′] were all random numbers in [−2.0, 8.0], and about
50% of them were zeros; each component of c ∈ Rr was drawn randomly from the
uniform distribution on [10.0, 11.0]; and each number γj was positive and selected so
that (5.1) was feasible but not trivial. Selecting seven sets of parameters (m,n, r),
we solved ten instances of (5.1) for each set using cbb s and cbb lp on a Linux
workstation (Linux 2.4.18, Itanium 2 processor 1GHz).

Table 5.1 shows the average number of branching operations and CPU seconds
for each set of (m,n, r). Each figure in brackets represents the number of instances
not solved in two hours. We see from this table that the surrogate relaxation S(∆)
is of help to cut down the number of branching operations considerably, which also
implies that the inequality in Proposition 4.1 held strictly in many iteration of
cbb s. As a consequence, cbb s is much faster than cbb lp in CPU seconds. Figure
5.1 compares the difference of the average CPU seconds taken by cbb s and cbb lp
when (m,n) = (10, 40). As for the instances not solved in two hours, the CPU
seconds are plotted at 7, 200 seconds expediently.

Even though we tested the codes on rather limited instances, the performance of
the proposed algorithm was promising, compared with the standard one. For some
instances, however, both codes were numerically unstable due to rounding errors,
and failed to terminate in two hours. In the next paper, we will discuss how to
resolve this troublesome issue.

7

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000

S
u
rr

o
g
a
te

re
la

x
a
ti

o
n

(l
o
g
,
se

c)

LP relaxation (log, sec)

r = 10

˜

˜

˜
˜ ˜

˜

˜

˜
˜

˜

˜
r = 15

× ×

×

××

××

×

×

×

×
r = 20

e

e

e

eee

e

e

e

ee

Figure 5.1: CPU seconds when (m,n) = (10, 40)

References

[1] R. J. Hillestad. Optimization problems subject to a budget constraint with economies
of scale. Operations Research 23 (1975), 1091–1098.

[2] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches, 3 ed. Springer-
Verlag, Berlin, 1996.

[3] H. Konno, P. T. Thach and H. Tuy. Optimization on Low Rank Nonconvex Structures.
Kluwer Academic Publishers, Dordrecht, 1997.

[4] T. Kuno and H. Nagai. A simplicial algorithm with two-phase bounding operation for
a class of concave minimization problems. Pacific Journal of Optimization 1 (2005),
297–313.

[5] T. Kuno and H. Nagai. A simplicial branch-and-bound algorithm conscious of special
structures in concave minimization problems. Technical Report CS-TR-05-2, University
of Tsukuba, Ibaraki, 2005.

[6] K. Moshirvaziri and M. A. Amouzegar. A subdivision scheme for linear programs with
an additional reverse convex constraint. Asia-Pacific Journal of Operations Research
15 (1998), 179–192.

[7] L. D. Muu. A convergent algorithm for solving linear programs with an additional
reverse convex constraint. Kybernetika 21 (1985), 428–435.

[8] Octave home page. http://www.octave.org/.

8

[9] H. Tuy. Concave programming under linear constraints. Soviet Mathematics 5 (1964),
1437–1440.

[10] H. Tuy. Convex Analysis and Global Optimization. Kluwer Academic Publishers,
Dordrecht, 1998.

Hidetoshi Nagai
Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1,
Ten’noudai, Tsukuba, Ibaraki 305-8573, Japan
E-mail address: nagai@syou.cs.tsukuba.ac.jp

Takahito Kuno
Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1,
Ten’noudai, Tsukuba, Ibaraki 305-8573, Japan
E-mail address: takahito@cs.tsukuba.ac.jp

9

