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Abstract— In general, the set of users utilities is bounded
because of the limitation of resources. There may exist
many Pareto optimal points in the set of users utilities.
For selecting a Pareto optimum point, a family of fair-
ness criteria, that contains the max-min fairness and a
parameterized family of fairness (by Mo and Walrand), has
been proposed and examined in some concrete networking
contexts that result in specific convex utility sets. We newly
examine general compact (closed and bounded) utility sets
which include the specific utility sets as special cases. We
first prove that each of the family of fairness criteria gives
a unique fair (Pareto optimum) point if the utility set is
convex. We find, however, counter-examples where each of
the family of fairness criteria gives multiple fair points i f
the utility set is not convex. We propose an extention of the
family of fairness criteria such that each of them gives only
a unique fair point regardless of whether the utility set is
convex or not, to which we give proofs. By using a specific
load balancing model, we illustrate the counter-examples
and how each criterion of our extended fair family gives
a unique fair point.

Index Terms— Fairness, convex and non-convex systems,
Pareto optimality, max-min fairness, proportional fairness,
mathematical programming / optimization, load balancing,
distributed computer systems.

I. I NTRODUCTION

In a multi-user system, it is generally not possible
to optimize simultaneously the performance of every
user. Instead, we consider the Pareto optima that are
the points of a system such that there exists no other
state where all users have simultaneously better benefits.
Thus, we may not have any absolute preference among
Pareto optima. The weighted sum optimization (which
maximizes the weighted sum of the users’ utilities with
different weights) is Pareto optimal. The well-known
overall optimization [18], [9], [10], [7] maximizes the
total utility over all users, and can be seen as a particular
case of weighted sum optimization.

There exist a priori innumerably many Pareto-optimal
situations. The choice of the one to achieve can be
controversial among users and a selection criterion is
fairness.

In networking contexts, various fairness concepts have
been already proposed [2], [13], [8], [14], [15]. Among

them are the well-known max-min fairness (adopted
by the ABR - Available Bit Rate service of the ATM
- Asynchronous Transfer Mode) and the proportional
fairness (achieved by the Vegas version of the TCP pro-
tocol [11]). Before them, mathematicians and economists
have developed several fairness criteria, one of the
oldest being proposed by Nash [16]. It is commonly
referred to as the Nash Bargaining Solution and coin-
cides with the proportional fairness introduced by Kelly
when some simplifying assumptions are made [19], [20].
In the context of congestion control, Mo and Walrand
[15] introduced a parameterized formulation of fairness,
which was later extended by considering concave and
increasing utility functions in the context of bandwidth
allocation [19], [20]. The utility functions represent the
satisfaction perceived by the user (typically function
of the delay or of the capacity). The interest of this
family is that it covers the max-min fair solution, the
Nash Bargaining Solution and the overall optimization
for particular values of the parameter. It hence enables
the provider of a system to finely tune the solution
according to its trade-off choice between fairness and
global efficiency. However, the formulation and study
constrained itself to the case where the utility functions
are increasing and concave, which leads to convex utility
sets.

In reality, there exist many systems where the set of
achievable utilities (also called the ”bargaining set” in
cooperative game theory) is not convex. In such systems,
defining fairness becomes more challenging, which is the
main question addressed by this paper. In game theory,
some recent research raised the question of how to define
fairness in non-convex systems [5], [21]. These studies
focus, however, on an axiomatic definition while we are
interested here in an optimization formulation.

Additionally, load balancing systems are of great inter-
est since they are a means of efficiently sharing resources
among users. Yet, although some research on how to
implement fairness has been conducted [17], there is
still a lack of theoretical formulation of fairness in this
field, which motivates our research. As a special case, we
hence consider a model consisting of two servers shared
by two users or two sets of users. As the utilities of users
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we consider the inverse of the delays (or equivalently the
mean response time) that they observe. For this system,
the utility sets are not convex.

The contributions of this paper are of two kinds. On
the one hand, rather than studying fairness in a specific
networking environment, we choose to examine it in a
general theoretical framework. In particular, we extend
the definition of max-min fairness and of the Mo and
Walrand fair family to any system. For this, we first
show that in convex systems a unique max-min fair
solution exists while in general utility sets the max-min
fair criterion leads to a finite set of equivalent points.
These points are equivalent in the sense that they only
differ from the user’s labels. Hence, in each system, a
”tie-breaking” rule needs to be agreed upon. We also
show that, when the utility set is not convex, the existing
formulation of the fair family has an infinity of solution
points. We then propose a new definition of the family
that assures the uniqueness of the solution. The new
family corresponds to the previously defined one when
the set is convex and we prove that it always gives Pareto
optimal solutions. In addition to these results, we show
that, when implementing the fair family, one has to make
sure of using utility and not costs sets.

On the other hand, we apply the fair family in a load
balancing system. We show that in spite of the simplicity
of the model, this system can serve as a support to the
study of fairness in non-convex systems. We study the
behavior of the fairness objectives through numerical
experiments. In particular, we observe that the fair points
can be located on convex and on concave segments of
the Pareto border and that they rapidly converge to the
max-min fair solution.

The rest of this paper is organized as follows. We
first present the max-min fairness and its properties in
non-convex systems (Section II), and then present the
fair family also both in convex and non-convex systems
(Section III). We then point out that, for any given
system, one must carefully define the utilities (Section
IV). Section V introduce the load balancing model while
Section VI presents shows some numerical results. The
last section finally concludes the article.

II. M AX -M IN FAIRNESS

We consider a system in which we want to share
efficiently and fairly a given resource amongn users. We
treat in this section the well known ”max-min” fairness.
In the next section, we focus on a general fair family
that covers, in particular, the max-min criterion.

Max-min fairness has been widely studied in special
cases of convex and compact utility systems (see for

instance [2], [3], [4], [8], [12], [13], [14], [22]). We pro-
pose here to study the criterion on a general framework
covering in any compact utility sets (convex or not).

We assume that to each n-dimensional allocation vec-
tor corresponds a utility vectoru = (u1, . . . , un) that
represents the relative satisfaction perceived by the users
with this allocation. We denote byU ⊂ Rn

+ \ {0} the
achievable utilities, that is, the achievable utilities are
strictly positive.

In the following, we suppose thatU is compact (for
real sets, this amounts to suppose that it is closed and
bounded).

A. Definition

1) Pareto optimality:Let us first recall the definition
of Pareto optimality over a setU :

Π =

{
u ∈ U

∣∣∣ ∀v ∈ U ,∃i, vi > ui ⇒
∃j, vj < uj , i, j ∈ {1, ..., n}

}
. (1)

The Pareto set is therefore included in the upper right
border of the utility set, which is why we also refer to it
as thePareto border. Studying the Pareto set is of interest
since it represents the points that cannot be dominated in
terms of utilities. Therefore, fair criteria should naturally
reach Pareto efficient equilibria.

2) Max-Min fairness: Max-min fairness is, roughly
speaking, the allocation in which the minimal utility is
maximized, in a recursive manner. More formally, let us
define the associated permutation of a point:

Definition 1: For any pointu of Rn, we define an
ordering permutationp a permutation of{1, ..., n} (that
is to say a bijection from{1, ..., n} to itself) such that
up(1) ≤ up(2) ≤ ... ≤ up(n). The vector−→u = (−→ui)i =
(up(i))i is theordered representationof u.

Definition 2: We define apartial order relation≺ by :

u ≺ v ⇔ ∃k ∈ {1, ..., n},

{
∀i < k,−→ui = −→vi
−→uk < −→vk .

Following [3], we say thatu ∈ U is max-min fairerthan
v if v ≺ u.

Let us consider for instance two points of coordinates
u = (7, 3, 6, 3) and v = (5, 4, 6, 3). Then −→u =
(3, 3, 6, 7) and −→v = (3, 4, 5, 6). We compare−→u and
−→v coordinate by coordinate, starting by their smaller
element. As−→u1 = −→v1 and−→u2 < −→v2 thenu ≺ v regardless
of the values of the bigger elements. We then extend
the definition of the max-min fair solution of [3] to any
system (convex or not):

Definition 3: A max-min fair point is maximal for the
relation≺.
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We show that, similarly to what is known in special
networking convex cases [2], [3], [4], [8], [12], [13], the
max-min fair points are always efficient:

Lemma 1:A max-min fair point is Pareto optimal.
Proof: Suppose thatu is not Pareto optimal. Then

∃v ∈ U , ∀i, ui ≤ vi, and∃k, uk < vk, and henceu ≺ v.

We define the following class of equivalence:
Definition 4: Two points u and v are saidutility-

symmetrical, and we writeu ∼ v if −→u = −→v (or
equivalently if neitheru ≺ v nor v ≺ u).
Similarly, we say that a utility setU is symmetricalif
∀u ∈ U , and ∀p permutation of{1, ..., n} the pointv
defined by∀i ∈ {1, ..., n}, vi = up(i) is also an element
of U .

B. Convex utility sets

When supposing the utility setsU to be convex, we
have the following properties:

Proposition 1: If the utility setU is convex, a unique
max-min fair point exists.

Proof: Let u and v be two max-min fair points,
u 6= v. If U is convex, we considerz ∈ U such that
z = u+v

2 . As u 6= v, let k such thatuk = min{ui|ui 6=
vi}. If uk < vk then zk > uk and u ≺ z and u is not
max-min fair. Else, if∃l, vl < vk then v ≺ z. If not,
then vk < zk and hencev ≺ z and v is not max-min
fair.

Proposition 2: If the utility set U is convex and
symmetrical, then the max-min fair pointu∗ satisfies:
u∗

1 = u∗
2 = ... = u∗

n.
Proof: Suppose thatu is max-min fair and that

∃i, j, i 6= j, such thatui < uj . Definev ∼ u by vi = uj ,
vj = ui and∀k /∈ {i, j}, vk = uk andz = u+v

2 . Then
∀k /∈ {i, j}, zk = uk andzi > ui. Henceu ≺ z.

These results are similar to the ones known in the
special cases of convex sets [2], [3], [4], [8], [12], [13],
[14], [15], [19], [20].

C. General case

In this section, we do not assume the convexity of the
utility set.

Proposition 3: Let U be a compact and non-empty
utility set. If u is a max-min fair point, thenv is max-
min fair if and only if u ∼ v.

Proof: Let u andv be max-min fair. Thenv ⊀ u

andu ⊀ v and hence−→u = −→v .
Conversely, letu be max-min fair andv such that

u ∼ v. Let z ∈ U . Then eitherz ≺ u (which implies
z ≺ v) or z ∼ u (which leads toz ∼ v). Hencev is
max-min fair.

Hence, there can exists up ton! max-min fair point
in a non-convex system. This result is illustrated in the
casen = 2 by the pointsu andv in Fig. 1.

Let us recall that fair criteria were originally defined,
in the context of game theory, as the unique solution
satisfying a set of axioms among which is the symmetry
axiom, stating that the solution does not depend on
specific labels [5]. The only difference between two
utility-symmetrical points is the mapping of the solution
to the identity of the users. It has therefore no impact
on the total performance of the system or the fairness of
the solution. Utility-symmetrical points are, hence, from
the fair and optimal point of view, identical. Hence, on
a system to system basis, a ”tie-breaking” rule as to be
decided upon, which is not needed when restrictingU
to be convex.

Remark 1:We can observe an interesting property.
In the case of convex utility functions, the max-min
fair solution is, roughly speaking, the Pareto optimal
point for which the utilities are as close as possible,
minimizing the distance of the Pareto border to the
line of equal utilities (u1 = u2 = ... = un). This
property does not hold with non-convex utility sets. Let
us consider for instance the pointa = (a1, a2) and
b = (b1, b2) of the Fig. 2, in a two users case. We see
that b2 = a1 but b1 > a2 and soa ≺ b (from Def. 2).
Hence,b is max-min fairer thana although it is located
further from the lineu1 = u2.

U1

U2
u2

u2u1

u1
v

u

Fig. 1. Two points can be
equally max-min fair.

U1

U2

a

b

Fig. 2. Max-min pointb has
less homogeneous utilities than
some other Pareto optima.

D. Summary of the section

In this section, we have extended the definition of
max-min fairness to any utility set. We have shown that
when the utility set is convex and compact, a unique
max-min fair point exists. When the set is not convex,
there exists a set of equivalent max-min fair points. These
points are equivalent in the sense that they correspond
to a re-ordering of the users’ labels. Hence, on any
system, a ”tie-breaking rule” needs to be agreed upon.
In Section V, we provide an example of such rule.
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III. G ENERAL FAIR FAMILY

In networking contexts, most of the research of fair
equilibria has been conducted in the case of resource
sharing with increasing and concave utility functions,
which leads to convex utility sets. Recently, in the
context of congestion control, Mo and Walrand [15] pro-
posed a general and simple uniform description (parame-
terized by parameterα) of a wide family of fair criteria,
including in particular proportional fairness and max-
min fairness. Touati et al. [19], [20] then generalized it
in order to express it in term of utility rather than on the
resource itself. Yet, the previous formulation restrained
itself to the case where the utility functions are increasing
and convex. In this section, we propose to extend the fair
family to any system.

A. Definition

Consider the solution ofmaxu∈U Fα(u) where

Fα(u) =





1

1 − α

∑

i

(
βiui

)1−α

if α ≥ 0, α 6= 1,

∑

i

log
(
ui

)
if α = 1.

(2)

In this formulation,α is called the fairness parameter and
βi > 0, i ∈ {1, ..., n} are the weights associated to the
users’ utility functions. The caseα = 0 corresponds to
the weighted sum of the utilities of the users. Whenα →
1 the criterion converges to a Nash bargaining solution
or proportional fair point.

In the following, and without loss of generality, we
suppose that∀i, βi = 1. (This amounts in considering
the utilitiesv ∈ V with ∀i, vi = βiui. Obviously, the set
V is convex if and only ifU is convex.)

Our study rely on the following lemmas:
Lemma 2:Let V ⊂ Rn

+ be a compact and non-empty
and G a strictly concave and continuous function from
V to R. Then, there exists̃G ∈ R and SG̃ ⊂ Rn such
that

G̃ = max
v∈V

G(v) andSG̃ = {v ∈ V|G(v) = G̃} 6= ∅.

(3)
Moreover, ifG is increasing with respect to each of its

variables, then the points ofSG̃ are Pareto optimal with
respect to the setV.

Proof: As V is compact andG is continuous, then
G(V) is compact (see, e.g. [23]), which gives Eq. (3).

Suppose thatu ∈ SG̃ is not Pareto optimal. Then,
there existsv ∈ V such that∀i ∈ {1, ..., n}, vi ≥ ui,
and that∃j ∈ {1, ..., n}, vj > uj . ThenG(v1, ..., vn) ≥
G(u1, ..., uj−1, vj , uj+1, ..., un) > G(u1, ..., un). Hence,
G(v) > G̃ which is impossible.

Lemma 3:For eachα > 0, the functionFα defined
in Eq. (2) is continuous, strictly concave and strictly
increasing with any of itsn variables.

Proof: On R+ \ {0}, we define:

fα : x 7→

{
1

1−α
x1−α if α 6= 1, α > 0

log(x) if α = 1.

Obviously,fα is strictly increasing and concave. Hence
the result, by summation over then variables.

B. Convex utility sets

We extend the formulation of Eq. (2) to convex and
compact utility sets. We first prove the uniqueness of the
solutions.

Lemma 4:Consider the notations of Lemma 2. IfV
is convex thenSG̃ is a singleton.

Proof: Suppose that∃u, v ∈ SG̃, u 6= v. Then
G(u) = G(v) = G̃. Considerz = u+v

2 . As V is convex,
then z ∈ V. As G is strictly concave, thenG(z) > G̃
which contradicts the definition of̃G.

We can now apply the result to the optimization
function Fα. From Lemma 3 and 4, we obtain:

Theorem 1:If the utility setU is convex and compact,
then, for eachα > 0, there exists a unique point̃u
solution ofF (ũ) = max

u∈U
Fα(u) and it is Pareto optimal.

Remark 2:Obviously, whenα = 0, the functionF0

is linear and therefore not strictly concave. Therefore, if
the utility set is not strictly concave, several solutions
may be obtained. This is actually a well-known result:
the global optimization is not unique.

Finally, we note that, similarly to what is obtained
with linear utilities in flow control, asα grows to infinity
the solutionSα converges to the one given by the max-
min fair criterion [15]. In the following subsection, we
propose to study the general framework of all compact
utility sets.

C. Extension of the fair family to general utility sets

Definition 5: For any utility setU and α > 0, we
define F̃α = max

u∈U
Fα(u) andSF̃α

= {u ∈ U|Fα(u) =

F̃α}. For clarity of presentation, we note in the following
Sα instead ofSF̃α

.
From Lemma 2 and 3, we have:
Proposition 4: For any compact utility setU , F̃α

exists andSα is not empty. Additionally,Sα is included
in the Pareto border.

When the setU is not convex, cases where the
optimization problem have several solutions (even in-
finitely many) exist. (Concrete examples will be given
in Section VI.) More precisely, ifU is a subset ofRn,
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Sα is a set of dimension up ton − 1. We therefore see
that the formulation of Eq. (2) does not constitute a good
general fairness objective when the utility sets are not
convex.

a) General algorithm:One interesting property of
the set of solutionsSα is that it is Pareto optimal. We
therefore propose to consider an algorithm that deter-
mines exactly one point ofSα. As shown in Section II,
with general utility sets, the max-min fairness criterion
gives a finite set of equivalent points. We therefore
propose to consider, as a fair solution associated to the
parameterα, the max-min fair solution of the setSα.
We then show, in the rest of this subsection, how to
determine the max-min fair point of a (non-convex) set.
We propose to then apply this method to the setSα, for
any value ofα.

b) Determining the max-min fair solution:We pro-
pose to determine the max-min fair point of the system
by using the fair family. The following proposition
characterizes the set of solutions corresponding to an
infinite value ofα:

Proposition 5: The solutionS∞ corresponding to an
infinite value ofα is the set of pointsu such that:

S∞ = {u ∈ Π|−→u1 = max{−→v1 , v ∈ U}},

with Π the Pareto border.
Proof: From Prop. 4, these points are Pareto

optimal. Considerα > 1 and u ∈ Sα. As α > 1, we
have:

−→u1
1−α ≥ −→u2

1−α ≥ ... ≥ −→un
1−α

with −→u the ordered representation ofu (as defined in
Def. 1). Definem = min{i ∈ {2, ..., n}, −→ui

1−α <
−→u1

1−α}. As α grows to infinity, then ∀i ≥ m,

(−→ui/
−→u1)

1−α
→ 0, and thereforeF (α) ≃ (m− 1)

−→u1
1−α

1 − α
.

We illustrate this result in Fig. 3, which is an enhance-
ment of Fig. 2 for a two users case. All the points of the
thick line correspond toS∞ and hence are identically
fair for the Mo and Walrand extended family. Therefore,
computingS∞ is not sufficient to determine the max-min
fair solution.

Yet, we can show an interesting characterization of the
max-min points by the fair family:

Theorem 2:A point u ∈ U is max-min fair if and
only if

∃α∗,∀α > α∗, u ∈ Sα

Proof: See Appendix.
Consider again Fig. 3. For a givenα ≥ 0 andK ∈ R,

we consider the curveFα,K of points of solutionu of
Fα(u) = K. For α = 0, F0,K has the shape of the
dashed line. Asα increases, the concavity of the curve

increases (its shape is given by the curved dashed line
for an intermediate value). Finally, whenα is infinite, the
shape ofF∞,K is given by the thick line. Simultaneously,
when K increases,Fα,K gets further from the origin.
Hence, we see that, althougha ∈ S∞ andb ∈ S∞, for
any finite value ofα, we haveF (b) > F (a).

U1

U2

a

b

F0,K

F∞,K

Fα,K

Fig. 3. Some solutions of̃F∞ are not acceptable.

Hence, in a non-convex system, the class of max-min
fair points is given by the intersection of the solution of
the fair family for large values ofα.

D. Procedure to obtain a unique fair point for the Mo
and Walrand fairness and for the Max-min fairness

In this section, we give the procedures to obtain a
unique fair point corresponding to: a) Max-min fairness
and b) the Mo and Walrand solution.

Let U a compact utility set (not necessarily convex).
Consider the familyFα as defined in Eq. (2). Our
procedure is as follows:

1) Do: V := U , i := 1.
2) If computing max-min fairness (a), then choose a

randomly large value ofα1. Else (b), takeα1 = α.
3) Repeat:

• compute

{
F̃αi

= max
u∈V

Fαi
(u)

Sαi
= {u ∈ V|Fαi

(u) = F̃αi
}

.

• Do: V := Sαi
, i := i + 1

• Randomly choose a large valueαi (αi 6=
αj , j < i)

until all points of V are utility-symmetrical (as
defined in Def. 4)

4) If V has more than one element, then apply the
tie-breaking rule. Examples of tie-breaking rules
are vast. For example, one could choose to give
priority to users with low indices. Another solution
would be to randomly choose one of the equivalent
points. In Section VI, we give a possible rule in
load balancing systems.
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The convergence of the procedure is assured by The-
orem 2. We note that the procedure would require at
most n iterations. In practice, however, this number
could be much lower. Also,Fα rapidly converges toF∞

and in practice, it is sufficient to consider values of the
parameter above20.

Remark 3:To check whether all the elements of a
non-empty setV are utility-symmetrical, one can proceed
as follows:

• Set i := 0
• Choosex ∈ V
• Removex from V
• While i = 0 do:

If V = ∅ then i = 1,
else

– Choosey ∈ V
– if x ≺ y or y ≺ x then i = 2
– Removey from V.

• If i = 1 (respectivelyi = 2), all the elements are
utility-symmetrical (respectively they are not).

E. Summary of the section

We have shown in this section that, for any convex
system and any fairness parameter, the Mo and Walrand
formulation gives a unique solution. On the other hand,
when the utility set is not supposed convex, we have
seen that the set of solutionSα can have infinitely many
optimal elements (we provide a concrete example in
Section VI). We therefore proposed to extend the fair
family so as to choose, for any solution set, the max-
min fair solution of Sα. However, in a general non-
convex system, computing the max-min fair solution is
not a simple problem. We hence provided a method to
determine the max-min fair solution of a general set
by using the optimization of a simple concave function
(Eq. (2)).

IV. A NOTE ON COST MINIMIZATION PROBLEMS

It is sometimes useful to consider a set of costs,
rather than of utilities. The cost functions could be, for
instance, the delay experienced for each flow of a system.
We show in this section that theminimization of the
objective (2) over thecostset is not acceptable as a fair
criterion. A concrete example will be given in the context
of load balancing in Remark 4 in Section V.

A. Definition

We can define the Pareto borderΠ
′ of a cost set

similarly as of a utility set (Eq. (1)) by reversing the
inequalities. Let us denote byC the set of costs. Then,

it seems natural to adapt the fair family to find the set
of solutionsTα in C such as tominimize

Hα(c) =





1

1 − α

∑

i

(
βici

)1−α

if α ≥ 0, α 6= 1,

∑

i

log
(
ci

)
if α = 1.

(4)

B. Validity

The following proposition shows that whenα grows
to infinity, the solution given by the minimization ofHα

is such that it minimizes the smaller cost, which is not
max-min fair.

Proposition 6: The solutionT∞ corresponding to an
infinite value ofα is the set of pointsx such that:

T∞ = {c ∈ Π
′|−→c1 = min{

−→
d1, d ∈ Π

′}}

with Π
′ the Pareto border for the cost setC.

Proof: Similarly to Lemma 2, we can show that
these points are Pareto optimal. Letc be in the set of
solutionsTα. For α > 1, we have:

−→c1
1−α ≥ −→c2

1−α ≥ ... ≥ −→cn
1−α

Let us define m ∈ N+ by m = max{i, i ∈
{1, ..., n},−→ci

1−α < −→c1
1−α}. As α grows to infinity then

(−→ci /
−→c1)

1−α
→ 0 and henceHα(c) ∼

−→c1
1−α

1 − α

m∑

i=1

βi.

V. L OAD BALANCING MODEL

A. Load balancing model

We consider the simple distributed computer system
represented in Fig. 4. It consists of two servers (com-
puters), labelled 1 and 2, and two flows of demandsφ1

and φ2 arriving from users1 and 2 at servers1 and
2, respectively (similar to the system studied in [6]). A
fraction xi (0 ≤ xi ≤ φi, i ∈ {1, 2}) of a flow of jobs
is forwarded from serveri to the other serverj (6= i).
We denote byx the vector(x1, x2) and by l1 and l2,
respectively, the resulting loads on nodes 1 and 2. Then
∀i, j ∈ {1, 2}, i 6= j, li = φi − xi + xj . We assume
that nodei has an exponential service time with mean
1/µi (i ∈ {1, 2}). Then, the mean delay at serveri under
the load of rateβi is given by(µi−βi)

−1. For simplicity,
we assume that forwarding a job requires a fixed delay
t. Therefore the delay experienced by the flow arriving
from the useri, can be written: fori, j ∈ {1, 2}, (i 6= j),

Ti(x) =
1

φi

[
φi − xi

µi − φi + xi − xj

+xi

(
t +

1

µj − φj + xj − xi

)]
. (5)
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1 2

x1 x2

φ1 φ2

Fig. 4. Load balancing system

A difficulty in its analysis is that the performance of
each user depends on the allocations of others. To write
it more formally, for eachi (i ∈ {1, 2}), Ti depends on
xj with j 6= i.

1) Set of constraints:We denote byX the set of
constraints on(x1, x2). The forwarding rates should be
positive or null and bounded by the arrival flow. Also,
the service time at each server should not grow without
bounds:µi − φi + xi − xj > 0,∀i, j ∈ {1, 2}, i 6= j.
Hence, we have

X =

{
x ∈ R2

∣∣∣∣
0 ≤ xi ≤ φi, i ∈ {1, 2} and

φ1 − µ1 < x1 − x2 < µ2 − φ2

}
,

and the necessary condition (NC) for the system to be
feasible isµ1 + µ2 > φ1 + φ2. The setX is clearly
convex.

When x1 − x2 → µ2 − φ2 or x1 − x2 → φ1 − µ1,
the values ofTi and T2 grow to infinity. We then
approximatesX by:

Xε =

{
x ∈ R2

∣∣∣∣
0 ≤ xi ≤ φi, i ∈ {1, 2} and

φ1−µ1 +ε ≤ x1−x2 ≤ µ2−φ2−ε

}

with ε a positive constant. Then, we can allowTi, i ∈
{1, 2} to have arbitrarily large values by properly choos-
ing the value ofε. Additionally, for anyε > 0, the set
Xε is compact.

2) Utilities: As a utility function, we consider the
inverse of the delay (which is homogeneous to a capacity
allocation):Ui(x) = 1/Ti(x). The utility set is then

Uε = {u = (u1, u2)|∃x ∈ Xε, ui = Ui(x), i ∈ {1, 2}}.

Obviously∀u ∈ Uε,∀i ∈ {1, 2}, ui > 0.
Remark 4:Although it would seem natural to con-

sider the utility U ′
i(T (x)) = −T (x), we note that it

would amount to consider the cost minimization family
H of Section IV, which is not acceptable. This result is
illustrated on Fig. 5. We see how the solutions ofHα

diverge from the max-min fair point asα increases, and
hence howHα is not acceptable as a fair family.

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-1.3 -1.2 -1.1 -1 -0.9 -0.8

α=0

α=1

α=2

U ′

1
=U ′

2

max-min fair
solution

U ′
1

U
′ 2

System parameters:
φ1 = 2.1,
φ2 = 2.7,
µ1 = 3,

µ2 = 3.7,
t = 0.001.

Fig. 5. The minimization of cost functions is not acceptable as a
fair criterion.

B. A non-convex utility set

As illustrated by Fig. 6, the utility set is not necessarily
convex. As a result, the Pareto set may be locally concave
or discontinuous.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

U
2

U1

(a) Non-convex set

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.5  0.55  0.6  0.65  0.7  0.75

U2

U1

Pareto
border

Achievable
Set

(b) Discontinuous Pareto border

φ1 = 0.4,

φ2 = 0.5,

µ1 = 1,

µ2 = 1.2,

t = 0.1.

Fig. 6. Utility set

Compactness:The utility set is compact, as it is the
image of a compact set (Xε) by continuous functions (U1

andU2).

In this section, we have described a simple load
balancing system. We have seen that, in spite of the
simplicity of the model, the utility set can be non-convex.
In the following section, we apply our general fairness
criterion to this system.
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VI. FAIR LOAD BALANCING

In this section, we study the properties of the fair (and
optimal) points in the load balancing problem described
in the previous section.

In the following subsection, we present how we ap-
plied the fair family to the system. Section VI-B then
present some numerical results we obtained.

A. Computational method

Since the utility set is not necessarily convex, we
apply the procedure of the extended fair family defined
in Section. III-D. In the general case (ofn users), the
construction needs at mostn iterations. Hence, in this
simple load balancing system, we solve the optimization
problem of Eq. (2) at mostn = 2 times.

To compute the fair solutions, we fix the value ofε
of ε = 0.001 and proceed as follows:

• 1st iteration: For given values of the parameters
(µ1, µ2, φ1, φ2, t andα), we set up our program so
as to compute

F̃α = max{Fα(x)|x ∈ Xε} (6)

andSα with a 0.1% accuracy. That is, we determine
the set :

S∗
α = {x ∈ Xε|Fα(x) ≥ 0.999F̃α}. (7)

• 2nd iteration: Since n = 2, then S∗
α is a set of

dimension1. When it does not consist of a single
point, we considerα′, with α′ sensibly larger than
α and then solve

F̃solα′ = max{Fα′(x), x ∈ S∗
α}, (8)

and the unique solution

uα such thatuα ∈ S∗
α andFα′(uα) = F̃solα′ .

(9)

Tie-breaking rule:We recall that for each value of the
parameter, the fair family gives a class of solution point.
In this case, there is at most2! = 2 equivalent solution
points (similar toa andb of Fig. 1). We hence need to
set up a ”tie-breaking rule”:
If u = (a, b) andv = (b, a) with a < b are equivalently
fair for some value of the parameterα, then the chosen
solution point is:

• u if U1((0, 0)) < U2((0, 0)),
• v otherwise.

B. Numerical results

1) Example and interest of the method:Fig. 7 rep-
resents an example where the Mo and Walrand fair
criterion does not give a unique solution, that is, the set
of the fair solutions,S∗

5 , has multiple points (note the
statement given after Prop. 4). This shows the appeal of
our method. (φ1 = 1, φ2 = 1.2, µ1 = 1.5, µ2 = 3, t =
0.05 andα = 5.)

We illustrate in Figs. 7 and 8 the construction of our
fair solution. AsS∗

5 is not reduced to a single element
(Fig. 7), we computeF̃sol20 (Eq. (8)) and the unique
solutionu5 (Eq. (9)) shown in Fig. 8.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1  1.1  1.2  1.3  1.4  1.5

U1

U
2

S∗
5

y = 2.605 − 1.173x

x−4 + y−4 = 1.01

Fig. 7. S
∗

5 is not a singleton.

φ1 = 1,

φ2 = 1.2,

µ1 = 1.5,

µ2 = 3,

t = 0.05.

 1.1

 1.15

 1.2

 1.25

 1.3

 1.1  1.15  1.2  1.25  1.3

U1

U
2

x−19 + y−19 = 0.081

u5 ≈ (1.18, 1.05)

Fig. 8. Extended fairness: solution.

2) Remarks:We provide here some remarks drawn
from numerical results.
Set S

∗

α
: As previously mentioned, the setS∗

α is of
dimension1. It is either:

• a single point (Fig. 9 withα = 0, 1, 2, ..., 70)
• a portion of curve, either continuous (Fig. 7) or not

(Fig. 10).

Convergence For very large values ofα, the program
becomes unstable, due to accumulation of round-off
errors. Hence, in the experiments, we limited the value
of α to be less than100, which might be, for special
values of the parameters, not sufficient for reaching the
max-min fair point. Yet, as the construction of theα-fair
point considers the max-min fair point of a restricted part
of the Pareto set, the experiments show that in practice
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 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

U1

U
2

U1 = U2

α = 0

α = 2

α=70
φ1 = 0.9,

φ2 = 0.4,

µ1 = 1.5,

µ2 = 2,

t = 0.35.

Fig. 9. Locally convex Pareto border.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.7  0.8  0.9  1  1.1  1.2U1

U
2

S∗
2.5

x−1.5 + y−1.5 = 2.165 φ1 = 1.1,

φ2 = 2,

µ1 = 2,

µ2 = 3,

t = 0.05.

Fig. 10. The setS∗

α
can be discontinuous.

the family rapidly converges to the max-min fair point
asα grows.
Tie-breaking rule Finally, we note that in our experi-
ments, we did not face any situation where we had to
make use of the tie-breaking rule. Although in theory
utility-symmetrical fair points exists, we expect them to
be rarely found in practice.

VII. C ONCLUSION

In this paper, we have studied in a general framework
a family of points parameterized by a parameterα which
enables us to finely tune the tradeoff between global
efficiency and fairness. Our starting point was a family
originally introduced in the context of fair bandwidth
allocation. We have shown that this family can be used in
the much wider range of systems in which the utility set
is convex and compact. More precisely, we have shown
that in that case the fair family has a unique solution.

In addition, when the utility set is not convex, we have
shown that there exists a class of equivalent max-min
fair points. As a given optimization function does not
necessarily have a unique extremum, the fair family may
have infinitely many solution points and defining fairness
becomes more challenging. We have therefore defined a
new fair family, that coincides with the previous one
when the utility functions are supposed convex and
which gives a unique solution for any (compact) utility
set. This research hence opens the road for deeper study
on fairness with general utility sets.

Non-convex systems exist in a variety of network-
ing situations. We have exhibited a simple static load
balancing model in which the utility set is not convex.
The system consists of two identical servers (computers)
with their own arrival and own queue. We have assumed
that the delay induced by forwarding a flow is fixed,
and have considered as a utility function the inverse of
the total delay experienced by the flow. We have seen
that in spite of the simplicity of the model, the utility
set can be non-convex and the Pareto border continuous
or not. Through numerical results, we examined the
parameterized fairness objectives in the load balancing
system.

APPENDIX

Proof of Theorem 2 1) (sufficiency) Letv be max-
min fair andu ∈ U . If u is max-min fair, then−→u = −→v
and soFα(u) = Fα(v).

If u is not max-min fair, thenu ≺ v. Define m =
min{i ∈ {1, ..., n}|−→ui < −→vi}. Then −→ui = −→vi for i =
1, ..., m. Define alsom′ = min{i > m|−→vm < −→vi}. Then
−→vm = −−−→vm+1 = ... = −−−→vm′−1 < −→vm′ and −→vj > −→vm, j =
m′, ..., n.

We then want to show that∃ε such that∀α >
ε, Fα(v) > Fα(u).

We have:

•

m−1∑

j=1

( −→vj
−→vm

)1−α

=
m−1∑

j=1

( −→uj
−→vm

)1−α

.

•

n∑

j=m′

( −→vj
−→vm

)1−α

−→
α→∞

0. Therefore∃ε1 > 1 such

that α > ε1 ⇒

n∑

j=m′

( −→vj
−→vm

)1−α

< 1.

•

(−→um
−→vm

)1−α

→ +∞, then ∃ε2 > 1 such thatα >

ε2 ⇒

(−→um
−→vm

)1−α

> m′ − m + 1.

• Since −→vm = −−−→vm+1 = ... = −−−→vm′−1 < −→vm′ , then
m′−1∑

j=m

−→vj
−→vm

= m′ − m

Finally, for all α > max{ε1, ε2}:
n∑

j=1

(−→uj
−→vm

)1−α

=

m−1∑

j=1

(−→vj
−→vm

)1−α

+
n∑

j=m′

(−→uj
−→vm

)1−α

+ m′ − m >
n∑

j=1

( −→vj
−→vm

)1−α

and soFα(v) > Fα(u). Hence∀u ∈ U not max-min
fair, ∃ε, ∀α > ε, Fα(v) > Fα(u).

2) (necessity) The proof of necessity goes similarly as
that of sufficiency. Letv ∈ U such that∃ε1 such that
∀α > ε1, v ∈ Sα. Let u ∈ U , u 6= v. Suppose thatv ≺
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u. Then definem and m′ with m = min{i|−→ui > −→vi},
andm′ = min{i|−→um′ > −→um}. Then as before,

m−1∑

j=1

( −→vj
−→um

)1−α

=

m−1∑

j=1

( −→uj
−→um

)1−α

.

As −→um > −→vm, then

(−→vm
−→um

)1−α

→ ∞ and therefore

∃ε2 such that∀α > ε2,

(−→vm
−→um

)1−α

> m′ − m + 1. As
n∑

j=m′

( −→uj
−→um

)1−α

→ 0, then ∃ε3,
n∑

j=m′

( −→uj
−→um

)1−α

< 1.

Finally, for any α > max{ε1, ε2, ε3}, Fα(u) > Fα(v),
which contradictsv ∈ Sα.
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[12] Massoulíe, L. and J. Roberts (1999). Bandwidth sharing: objec-
tives and algorithms. In:Proc of IEEE INFOCOM3, 1395–1403.

[13] Maulloo, A., F. P. Kelly and D. Tan (1998). Rate control in
communication networks: Shadow prices, proportional fairness
and stability.J. of the Operational Res. Soc.49, 237–252.

[14] Mazumdar, R., L. G. Mason and C. Douligeris (1991). Fairness
in network optimal flow control: Optimality of product forms.
IEEE Trans. Communications39(5), 775–782.

[15] Mo, J. and J. Walrand (2000). Fair end-to-end window-based
congestion control.IEEE/ACM Trans. Networking8(5), 556–567.

[16] Nash, J. (1950). The Bargaining Problem.Econometrica18,
155–162.

[17] Sabin, G., V. Sahasrabudhe and P. Sadayappan (2004). On
Fairness in Distributed Job Scheduling Across Multiple Sites. In:
Proc. of IEEE Int. Conf. on Cluster Computing, 35- 44.

[18] Tantawi, A. N. and D. Towsley (1985). Optimal static load
balancing in distributed computer systems.J. ACM 32(2), 445–
465.

[19] Touati, C., E. Altman, and J. Galtier (2001). On fairness in
bandwidth allocation.Inria Research ReportRR 4269.

[20] Touati, C., E. Altman, and J. Galtier (2002). Utility Based Fair
Bandwidth Allocation. In:Proc. of IASTED NPDPA, 126-131.

[21] Xu, Y and N. Yoshihara (2005). Alternative characterizations
of three bargaining solutions for nonconvex problems.COE/RES
Discussion Paper Series, No.126.
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