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Abstract— In general, the set of users utilities is bounded them are the well-known max-min fairness (adopted
because of the limitation of resources. There may exist by the ABR - Available Bit Rate service of the ATM
many Pareto optimal points in the set of users utilities. . Asynchronous Transfer Mode) and the proportional
For selecting a Pareto optimum point, a family of fair-  fajress (achieved by the Vegas version of the TCP pro-
ness criteria, that contains the max-min faimess and a 4o 1117) Before them, mathematicians and economists
parameterized family of fairess (by Mo and Walrand), has have developed several fairness criteria, one of the

been proposed and examined in some concrete networking ) .
contexts that result in specific convex utility sets. We newi oldest being proposed by Nash [16]. It is commonly

examine general compact (closed and bounded) utility setseferred to as the Nash Bargaining Solution and coin-
which include the specific utility sets as special cases. Wecides with the proportional fairness introduced by Kelly
first prove that each of the family of fairness criteria gives when some simplifying assumptions are made [19], [20].
a unique fair (Pareto optimum) point if the utility set is In the context of congestion control, Mo and Walrand
convex. We find, however, counter-examples where each of[15] introduced a parameterized formulation of fairness,
the famﬂy of .falrness criteria gives multiple fair points if \which was later extended by considering concave and
the utility set is not convex. We propose an extention of the increasing utility functions in the context of bandwidth

family of fairness criteria such that each of them gives only . . .
a unique fair point regardless of whether the utility set is allocation [19], [20]. The utility functions represent the

convex or not, to which we give proofs. By using a specific satisfaction perceived by the user (typically function
load balancing model, we illustrate the counter-examples Of the delay or of the capacity). The interest of this
and how each criterion of our extended fair family gives family is that it covers the max-min fair solution, the
a unique fair point. Nash Bargaining Solution and the overall optimization
Index Terms— Faimess, convex and non-convex systems,for particular values of the parameter. It hence enables

Pareto optimality, max-min fairmess, proportional faimess, the provider of a system to finely tune the solution
mathematical programming / optimization, load balancing, according to its trade-off choice between fairness and

distributed computer systems. global efficiency. However, the formulation and study
constrained itself to the case where the utility functions
l. INTRODUCTION are increasing and concave, which leads to convex utility

In a multi-user system, it is generally not possibleets.
to optimize simultaneously the performance of every In reality, there exist many systems where the set of
user. Instead, we consider the Pareto optima that aehievable utilities (also called the "bargaining set” in
the points of a system such that there exists no othe®operative game theory) is not convex. In such systems,
state where all users have simultaneously better benefitgfining fairness becomes more challenging, which is the
Thus, we may not have any absolute preference amangin question addressed by this paper. In game theory,
Pareto optima. The weighted sum optimization (whickome recent research raised the question of how to define
maximizes the weighted sum of the users’ utilities witfairness in non-convex systems [5], [21]. These studies
different weights) is Pareto optimal. The well-knowrfocus, however, on an axiomatic definition while we are
overall optimization [18], [9], [10], [7] maximizes theinterested here in an optimization formulation.
total utility over all users, and can be seen as a particularAdditionally, load balancing systems are of great inter-
case of weighted sum optimization. est since they are a means of efficiently sharing resources

There exist a priori innumerably many Pareto-optimamong users. Yet, although some research on how to
situations. The choice of the one to achieve can bplement fairness has been conducted [17], there is
controversial among users and a selection criterion g8ll a lack of theoretical formulation of fairness in this
fairness. field, which motivates our research. As a special case, we

In networking contexts, various fairness concepts hakience consider a model consisting of two servers shared
been already proposed [2], [13], [8], [14], [15]. Amondy two users or two sets of users. As the utilities of users



we consider the inverse of the delays (or equivalently tivestance [2], [3], [4], [8], [12], [13], [14], [22]). We pro-

mean response time) that they observe. For this systgmase here to study the criterion on a general framework

the utility sets are not convex. covering in any compact utility sets (convex or not).
The contributions of this paper are of two kinds. On We assume that to each n-dimensional allocation vec-

the one hand, rather than studying fairness in a speciic corresponds a utility vectos = (uq,...,u,) that

networking environment, we choose to examine it in r@presents the relative satisfaction perceived by thesuser

general theoretical framework. In particular, we extengith this allocation. We denote by C R’ \ {0} the

the definition of max-min fairness and of the Mo andchievable utilities, that is, the achievable utilitie® ar

Walrand fair family to any system. For this, we firsstrictly positive.

show that in convex systems a uniqgue max-min fair In the following, we suppose thaf is compact (for

solution exists while in general utility sets the max-mireal sets, this amounts to suppose that it is closed and

fair criterion leads to a finite set of equivalent pointhounded).

These points are equivalent in the sense that they only

differ from the user’s labels. Hence, in each system, a o

"tie-breaking” rule needs to be agreed upon. We aléy Definition

show that, when the utility set is not convex, the existing 1) Pareto optimality: Let us first recall the definition

formulation of the fair family has an infinity of solutionof Pareto optimality over a sét:

points. We then propose a new definition of the family

that assures the uniqueness of the solution. The newy _ {u eu‘ Vv €U, Ji,vi > up = } (1)

family corresponds to the previously defined one when 3, vj <wy,i,j €{L,...,n}

the set is convex and we prove that it always gives Pareto].he Pareto set is therefore included in the upper right

optimal solutions. In addition to these results, we ShoM’order of the utility set, which is why we also refer to it

that, when. mplgmentmg the fair family, one has to makgs thePareto border Studying the Pareto set is of interest
sure of using utility and not costs sets.

ince it represents the points that cannot be dominated in
On the other hand, we apply the fair family in a Ioaé P P

: : . .~ “”Yerms of utilities. Therefore, fair criteria should natilyal
balancing system. We show that in spite of the smphm%ach Pareto efficient equilibria

of the model, this system can serve as a support to thez) Max-Min fairness: Max-min fairmess is, roughly

study of faimess in non-convex systems. We study thf)eaking, the allocation in which the minimal utility is

. . o .S
behavior of the fairness objectives through numerical . . ) .
maximized, in a recursive manner. More formally, let us

experiments. In particular, we observe that the fair points .. . . .

efine the associated permutation of a point:
can be located on convex and on concave segments O efinition 1- For anv pointw of R we define an
the Pareto border and that they rapidly converge to the, . - For any pointu ol '
max-min fair solution. grderlng permutatiorp a permutation of 1, ...,n} (that

The rest of this paper is organized as follows.

first present the max-min fairness and its properties
non-convex systems (Section Il), and then present t
fair family also both in convex and non-convex systems
(Section Ill). We then point out that, for any given ke (1 Vi< k,u =7,
system, one must carefully define the utilities (Section % <v < ke {l,...,n}, W <.
IV). Section V introduce the load balancing model while . . o
Section VI presents shows some numerical results. Thellowing [3], we say that € U/ is max-min fairerthan

last section finally concludes the article. vif v <u.
Let us consider for instance two points of coordinates

u = (7,3,6,3) andv = (5,4,6,3). Then W =
(3,3,6,7) and ¥ = (3,4,5,6). We comparew and

We consider a system in which we want to shar@ coordinate by coordinate, starting by their smaller
efficiently and fairly a given resource amonaisers. We element. Asu; = v; andus < v3 thenu < v regardless
treat in this section the well known "max-min” fairnessof the values of the bigger elements. We then extend
In the next section, we focus on a general fair familthe definition of the max-min fair solution of [3] to any
that covers, in particular, the max-min criterion. system (convex or not):

Max-min fairness has been widely studied in special Definition 3: A max-min fair point is maximal for the
cases of convex and compact utility systems (see f@lation <.

S to say a bijection from{1,...,n} to itself) such that
uﬁ(l) §_up(2) < ... < Up(n)- The \_/ectorﬁ = (Ez))z =
{]u (i))i is theordered representationf wu.

efinition 2: We define gpartial order relation< by :

Il. MAX-MIN FAIRNESS



We show that, similarly to what is known in special Hence, there can exists up td0 max-min fair point
networking convex cases [2], [3], [4], [8], [12], [13], thein a non-convex system. This result is illustrated in the
max-min fair points are always efficient: casen = 2 by the pointsu andwv in Fig. 1.

Lemma 1: A max-min fair point is Pareto optimal. Let us recall that fair criteria were originally defined,

Proof: Suppose that: is not Pareto optimal. Thenin the context of game theory, as the unique solution
Jv el, Vi,u; < v, andIk, ug, < v, and hencar < v.  satisfying a set of axioms among which is the symmetry
B axiom, stating that the solution does not depend on

We define the following class of equivalence: specific labels [5]. The only difference between two

Definition 4: Two points v and v are saidutility- utility-symmetrical points is the mapping of the solution
symmetrical and we writeuw ~ v if @ = @ (or to the identity of the users. It has therefore no impact
equivalently if neitheru < v norv < u). on the total performance of the system or the fairness of
Similarly, we say that a utility set/ is symmetricalif the solution. Utility-symmetrical points are, hence, from
Yu € U, andVp permutation of{1,...,n} the pointv the fair and optimal point of view, identical. Hence, on
defined byvi € {1,...,n},v; = uy,; is also an element a system to system basis, a "tie-breaking” rule as to be

of U. decided upon, which is not needed when restricfihg
to be convex.
B. Convex utility sets Remark 1:We can observe an interesting property.

In the case of convex utility functions, the max-min
fair solution is, roughly speaking, the Pareto optimal
point for which the utilities are as close as possible,
minimizing the distance of the Pareto border to the
line of equal utilities ¢4 = w2 = ... = wuy,). This
property does not hold with non-convex utility sets. Let
us consider for instance the poiat = (a;,a2) and

b = (b1, b2) of the Fig. 2, in a two users case. We see
thatby, = a; but by > as and soa < b (from Def. 2).
Hence,b is max-min fairer thara although it is located
further from the lineu; = wus.

When supposing the utility sefg to be convex, we
have the following properties:

Proposition 1: If the utility set/ is convex, a unigque
max-min fair point exists.

Proof: Let w andv be two max-min fair points,

u # v. If U is convex, we considee € U/ such that
z =Y Aswu # v, let k such thatu, = min{u;|u; #
v} If up < v thenz, > u, andu < z andu is not
max-min fair. Else, ifdl,v; < v thenv < z. If not,
thenv, < 2z, and hencev < z and v is not max-min
fair.

Proposition 2: If the utility set ¢/ is convex and Us
symmetrical, then the max-min fair poiat* satisfies: u2-{----~-%u U
Uy =uy = ...o=Uup.

Proof: Suppose thats is max-min fair and that¥1y-7---

3i, 7, © # j, such thaty; < u;. Definev ~ u by v; = uy,
v; = u; andVk ¢ {i,j}, vy = ux andz = %2, Then
Vk ¢ {i,j}, zx = up and z; > u;. Henceu < z. [ U

These results are similar to the ones known in the ul o up Ui
special cases of convex sets [2], [3], [4], [8], [12], [13]
[14], [15], [19], [20].

Fig. 1. Two points can bé&ig. 2. Max-min pointb has
equally max-min fair. less homogeneous utilities than
some other Pareto optima.

C. General case

In this section, we do not assume the convexity of the _
utility set. D. Summary of the section

Proposition 3: Let &/ be a compact and non-empty In this section, we have extended the definition of
utility set. If u is a max-min fair point, them is max- max-min fairness to any utility set. We have shown that

min fair if and only if u ~ v. when the utility set is convex and compact, a unique
Proof: Let w andwv be max-min fair. Therw £ v max-min fair point exists. When the set is not convex,
andu 4 v and henceu = v. there exists a set of equivalent max-min fair points. These

Conversely, letu be max-min fair andv such that points are equivalent in the sense that they correspond
u ~ v. Let z € Y. Then eitherz < u (which implies to a re-ordering of the users’ labels. Hence, on any
z < v) or z ~ u (which leads toz ~ v). Hencewv is system, a "tie-breaking rule” needs to be agreed upon.
max-min fair. B In Section V, we provide an example of such rule.



[Il. GENERAL FAIR FAMILY Lemma 3:For eacha > 0, the functionF, defined

In networking contexts, most of the research of falp EQ- (2) is continuous, strictly concave and strictly
equilibria has been conducted in the case of resoufB§reasing with any of its: variables.
sharing with increasing and concave utility functions, ~Proof: OnR*\ {0}, we define:
which leads to convex utility sets. Recently, in the Lol ifa#tl,a>0
context of congestion control, Mo and Walrand [15] pro- Jorw— { logoZac) if o =1.
posed a general and simple uniform description (parame- . . ] .
terized by parameter) of a wide family of fair criteria, Obviously, f,, is StI‘ICt|¥ increasing and concave. Hence
including in particular proportional fairess and maxe result, by summation over thevariables. u
min fairness. Touati et al. [19], [20] then generalized it
in order to express it in term of utility rather than on th&. Convex utility sets

resource itself. Yet, the previous formulation restrained We extend the formulation of Eq. (2) to convex and

itself to the case where the utility functions are incre@s"&ompact utility sets. We first prove the uniqueness of the
and convex. In this section, we propose to extend the fajf| ions.

family to any system. Lemma 4: Consider the notations of Lemma 2. W

is convex thenSg is a singleton.
A. Definition Proof: Suppose thatiu,v € S5, u # v. Then
Consider the solution ofiaxyey; Fiy(u) where G(u) = G(v) = G. Considerz = “7. AsV is convex,
1 Lw thenz € V. As G is strictly concave, theit:(z) > G
Z (ﬁlul) if a>0,a#1, which contradicts the definition af. [ |
- l-a i 2) We can now apply the result to the optimization
Zlog <ul> if a=1. function F,,. From Lemma 3 and 4, we obtain:
i Theorem 1:If the utility setl{ is convex and compact,

In this formulation a is called the faimess parameter anfen. for eacha > 0, there exists a unique poini

B; > 0,i € {1,...,n} are the weights associated to th&olution of F'(u) = max Fo(u) and it is Pareto optimal.

users’ utility functions. The case = 0 corresponds to  Remark 2: Obviously, whena = 0, the function Fj

the weighted sum of the utilities of the users. When- is linear and therefore not strictly concave. Therefore, if

1 the criterion converges to a Nash bargaining solutidhe utility set is not strictly concave, several solutions

or proportional fair point. may be obtained. This is actually a well-known result:
In the following, and without loss of generality, wethe global optimization is not unique.

suppose thati, 3; = 1. (This amounts in considering Finally, we note that, similarly to what is obtained

the utilitiesv € V with Vi, v; = B;u;. Obviously, the set with linear utilities in flow control, agx grows to infinity

V is convex if and only ifi/ is convex.) the solutionS,, converges to the one given by the max-
Our study rely on the following lemmas: min fair criterion [15]. In the following subsection, we
Lemma 2:Let V C R”} be a compact and non-emptypropose to study the general framework of all compact

and G a strictly concave and continuous function fronutility sets.

V to R. Then, there exist§&/ € R and S5 C R” such

that C. Extension of the fair family to general utility sets

G = max G(v) andSi = {v € V|G(v) = G} #+ . Definition 5: For any utility setZ/ anda > 0, we

ve (3) defineF, = max Fo(u) andSp = {u € U|Fy(u) =
Moreover, if G is increasing with respect to each of itg7, 1. For clarity of presentation, we note in the following
variables, then the points ¢~ are Pareto optimal with S, instead ofS .
respect to the sev. _ _ From Lemma 2 and 3, we have:

P_roof: As V is compact and- is _contlnuous, then Proposition 4: For any compact utility setd, F,
G(V) is compact (see, e.g. [23]), which gives Eq. (3).exists andS, is not empty. Additionally,S, is included

Suppose thatw € S5 is not Pareto optimal. Then, iy the Pareto border.

there existsv € V such thatvi € {1,...n},v; > ui,  When the set{ is not convex, cases where the
and thatdj € {1,...,n}, v; > u;. ThenG(v1,...,vn) = optimization problem have several solutions (even in-
G(un, s Uj1, V55 U1, ooy Un) > G(u, .. up). HENCE, finitely many) exist. (Concrete examples will be given
G(v) > G which is impossible. B in Section VI.) More precisely, it/ is a subset ofR™,

Fy(u)



S, is a set of dimension up ta — 1. We therefore see increases (its shape is given by the curved dashed line
that the formulation of Eq. (2) does not constitute a goddr an intermediate value). Finally, whenis infinite, the
general fairness objective when the utility sets are nsthape ofF, x is given by the thick line. Simultaneously,
convex. when K increases,F, x gets further from the origin.
a) General algorithm:One interesting property of Hence, we see that, althoughe S, andb € S, for
the set of solutionsS,, is that it is Pareto optimal. We any finite value of«, we haveF'(b) > F(a).
therefore propose to consider an algorithm that deter-
mines exactly one point af,. As shown in Section II, !
with general utility sets, the max-min fairness criterion A
gives a finite set of equivalent points. We therefore U RN
propose to consider, as a fair solution associated to the o
parametera, the max-min fair solution of the sef,. RN IR
We then show, in the rest of this subsection, how to ‘ \\\\
determine the max-min fair point of a (non-convex) set. b Foo K
We propose to then apply this method to the &gt for SN
any value ofa.
b) Determining the max-min fair solutionie pro- Fox

pose to determine the max-min fair point of the system 7
by using the fair family. The following proposition 1
characterizes the set of solutions corresponding to @g. 3. Some solutions of are not acceptable.
infinite value ofa:

Proposition 5: The solutionS,, corresponding to an Hence, in a non-convex system, the class of max-min
infinite value of« is the set of pointa: such that: fair points is given by the intersection of the solution of

See = {u € |7 = max{o7,v € U}}, the fair family for large values of..

with IT the Pareto border. D. Procedure to obtain a unique fair point for the Mo

Proof: From Prop. 4, these points are Paretgnd Walrand fairness and for the Max-min fairness
optimal. Consider > 1 andu € S,. As a > 1, we

have:

In this section, we give the procedures to obtain a
Sloas s ola unique fair point corresponding to: a) Max-min fairness
== and b) the Mo and Walrand solution.

with o the ordered representation af (as defined in  Let &/ a compact utility set (not necessarily convex).
Def. 1). Definem = min{i € {2,..,n}, u;'~* < Consider the familyF,, as defined in Eq. (2). Our
11"}, As o grows to infinity, thenVi > m, procedure is as follows:

l-a . .
(@ /@) ™™ = 0, and therefore?(a) ~ (m—1)%—. 1) Dove=u i=1 —

1-— oy 2) If computing max-min fairness (a), then choose a

randomly large value of;. Else (b), takex; = a.

3) Repeat:

We illustrate this result in Fig. 3, which is an enhance-
ment of Fig. 2 for a two users case. All the points of the
thick line correspond t&S,, and hence are identically
fair for the Mo and Walrand extended family. Therefore,
computingS., is not sufficient to determine the max-min

F,, = max F,,(u)

e« COMpute uey N .
8047‘, = {’LL S V|Faq(u) = Faq}

e DO:V:=8,,,i:=1+1

fair solution.

Yet, we can show an interesting characterization of the

max-min points by the fair family:
Theorem 2:A point w € U is max-min fair if and
only if
Ja*,Va > a*,u € S,
Proof: See Appendix. ]
Consider again Fig. 3. For a given> 0 and K € R,
we consider the curveér, i of points of solutionu of

Fy(u) = K. Fora = 0, Fyx has the shape of the
dashed line. Asy increases, the concavity of the curve

« Randomly choose a large value; (o; #
Oéj,j < Z)

until all points of V are utility-symmetrical (as
defined in Def. 4)
If ¥V has more than one element, then apply the
tie-breaking rule. Examples of tie-breaking rules
are vast. For example, one could choose to give
priority to users with low indices. Another solution
would be to randomly choose one of the equivalent
points. In Section VI, we give a possible rule in
load balancing systems.



The convergence of the procedure is assured by Tlieseems natural to adapt the fair family to find the set
orem 2. We note that the procedure would require at solutionsT,, in C such as taminimize

most n iterations. In practice, however, this number 1 i
could be much lower. Alsak,, rapidly converges tds T—a Z (@'Ci) if a>0,a#1,
and in practice, it is sufficient to consider values of the H,(c) = ¢ _ 4)
parameter aboveo. > log (Cz) if o =1.
Remark 3:To check whether all the elements of a ‘
non-empty sev’ are utility-symmetrical, one can proceed
as follows: B. Validity
e Seti:=0 The following proposition shows that when grows
. Choosex € V to infinity, the solution given by the minimization &,
. Removex from V is such that it minimizes the smaller cost, which is not
« While i = 0 do: max-min fair.
If V= o theni = 1, Proposition 6: The solution7,, corresponding to an
else infinite value ofa is the set of points such that:
— Choosey € V Too = {c € IV'|c; = min{dy,d € I'}}
—ifx <y ory <xtheni=2
— Removey from V. with IT’ the Pareto border for the cost g&t

Proof: Similarly to Lemma 2, we can show that
these points are Pareto optimal. Lete in the set of
solutions7,,. For a > 1, we have:

e If i =1 (respectively; = 2), all the elements are
utility-symmetrical (respectively they are not).

E. Summary of the section aglre>gla>. >l

We have shown in this section that, for any conveXet us definemm € Nt by m = max{i,i €
system and any fairness parameter, the Mo and Walrand .}, 1= < &1}, As o grows to infinity then
formulation gives a unique solution. On the other hand, , | Gla
when the utility set is not supposed convex, we havé: /)" — 0 and henceH,(c) ~ 1o > 6.
seen that the set of solutia@), can have infinitely many =1

optimal elements (we provide a concrete example in
Section VI). We therefore proposed to extend the fair
family so as to choose, for any solution set, the mag- Load balancing model
min fair solution of S,. However, in a general non- We consider the simple distributed computer system
convex system, computing the max-min fair solution iepresented in Fig. 4. It consists of two servers (com-
not a simple problem. We hence provided a method paiters), labelled 1 and 2, and two flows of demangs
determine the max-min fair solution of a general seind ¢, arriving from usersl and 2 at serversl and
by using the optimization of a simple concave functio, respectively (similar to the system studied in [6]). A
(Eq. (2)). fraction z; (0 < z; < ¢;,1 € {1,2}) of a flow of jobs
is forwarded from servei to the other servey (# i).
IV. A NOTE ON COST MINIMIZATION PROBLEMS  We denote byx the vector(zy,z2) and byl; and iy,
It is sometimes useful to consider a set of Costgespectlvely, the resulting loads on nodes 1 and 2. Then

rather than of utilities. The cost functions could be, foﬁ% J € A{L2%i # j, L = ¢ — i + x;. We assume

V. LOAD BALANCING MODEL

instance, the delay experienced for each flow of a syste at nodezlh;s a_lrjhexpor:lentlal szrvllce time with dmean
We show in this section that theinimization of the hml (Zde {f t}) en, t Emean eellyst ser\zelln ter
objective (2) over theostset is not acceptable as a falF € load of ratej; is given by (u; - ;) or simplicity,

criterion. A concrete example will be given in the contex/© assume that forwarding a job requires a fixed delay
of load balancing in Remark 4 in Section V. t. Therefore the delay experienced by the flow arriving
from the uset, can be written: foi, j € {1,2}, (i # j),

A. Definition Ty(x) = 1 [ bi —

We can define the Pareto bordEF of a cost set $i Lpi — ¢i+xi —
similarly as of a utility set (Eq. (1)) by reversing the +x; (t+ 1 )] )
inequalities. Let us denote hy the set of costs. Then, — @5+ xj—




-0.8

max-min fair . |
solution g1 77 System parameters:

-0.9

¢ =21,
= ¢2 = 2.7,
Z1 T n1 = 37
b1 ®2 =2 to = 3.7,
Fig. 4. Load balancing system t = 0.001.

iep .. - ig. 5.  The minimization of cost functions is not acceptable as a
A difficulty in its analysis is that the performance oty criterion.

each user depends on the allocations of others. To write
it more formally, for each (i € {1,2}), T; depends on
1) Set of constraints:We denote byX the set of
constraints on(z1,x2). The forwarding rates should be As illustrated by Fig. 6, the utility set is not necessarily
positive or null and bounded by the arrival flow. Alsogonvex. As a result, the Pareto set may be locally concave
the service time at each server should not grow withoat discontinuous.
bounds:p; — ¢; + x; — T; > 0,vi, j € {1,2},i % j.
Hence, we have

B. A non-convex utility set

0.7 |

0<uz; <¢;, i€{l,2} and }

X={xcR?
{ ¢ —p1 < a1 — 22 < U2 — P2

and the necessary condition (NC) for the system to be,,|

feasible isuy + po > ¢1 + ¢2. The setX’ is clearly

COnvex. b ]
When Tl — Ty — U — ¢2 or r1 — 9 — ¢1 — 1, o1 02 03 O,Ul 05 06 07

02

the values of7; and 7, grow to infinity. We then (a) Non-convex set zlig‘;ﬂ

approximatest’ by: — 1. ,
0.75 l’l’l = y

Pareto p2 =12,

XE:{mERQ

0<uz; <¢;, ic{l,2}and } or

pr—pmte<w—x2 < g —a—¢ // border | t=0.1.

/

0.65

with ¢ a positive constant. Then, we can alld, i Uzos
{1, 2} to have arbitrarily large values by properly choos- °=
ing the value ofs. Additionally, for anye > 0, the set o5
X. is compact.
2) Utilities: As a utility function, we consider the
inverse of the delay (which is homogeneous to a capacity (P) Discontinuous Pareto border
allocation):U;(x) = 1/T;(x). The utility set is then Fig. 6. Utility set

05 055 0.6 U 0.65 0.7 0.75
1

U = {u = (u1,u2)| Iz € X, u; = Uy(x), i € {1,2}}.

CompactnessThe utility set is compact, as it is the
ObviouslyVu € U, Vi € {1,2},u; > 0. image of a compact se&{) by continuous functions{;

Remark 4:Although it would seem natural to con-andU5).

sider the utility U/(T'(x)) = —T(x), we note that it
would amount to consider the cost minimization family In this section, we have described a simple load
H of Section IV, which is not acceptable. This result ibalancing system. We have seen that, in spite of the
illustrated on Fig. 5. We see how the solutions B simplicity of the model, the utility set can be non-convex.
diverge from the max-min fair point as increases, and In the following section, we apply our general fairness
hence howH,, is not acceptable as a fair family. criterion to this system.



V1. FAIR LOAD BALANCING B. Numerical results

In this section, we study the properties of the fair (and 1) Example and interest of the methoBig. 7 rep-
optimal) points in the load balancing problem describd§S€Nts an example where the Mo and Walrand fair
in the previous section. criterion does not give a unique solution, that is, the set

In the following subsection, we present how we aﬁ)-f the fair s_olutlor;tsﬁg*l); has4muTI';|1ple Eomts h(note thel f
plied the fair family to the system. Section VI-B therptatement given ater Prop. )- This shows the appeal o

present some numerical results we obtained. our method. ¢1 =1, ¢2 =12, yy =15, pp =3, t =
0.05 anda = 5.)

We illustrate in Figs. 7 and 8 the construction of our
A. Computational method fair solution. AsS? is not reduced to a single element

(Fig. 7), we computeFEJbo (Eg. (8)) and the unique
Since the utility set is not necessarily convex, Wgp|utionu5 (Eq. (9)) shown in Fig. 8.

apply the procedure of the extended fair family defined
in Section. IlI-D. In the general case (af users), the

construction needs at most iterations. Hence, in this
simple load balancing system, we solve the optimization | S5
problem of Eq. (2) at most = 2 times. W - o =1
To compute the fair solutions, we fix the value of & ‘ /’:2'60"71'1731’ ¢2 =12,
of e = 0.001 and proceed as follows: e 1 m=15
« 1% iteration: For given values of the parameters . /o oyt =101 f 2’__()?)5
(11, 2, 61, ¢2,t and ), we set up our program so | o T
as to compute ' I U1 SRR s
— Fig. 7. S; is not a singleton.
F, = max{F,(x)|x € X.} (6)
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andS,, with a0.1% accuracy. That is, we determine )
the set : ol W ~ (118,1.05) 1
Si={z € X|Fy(x) 2 0.999F,}.  (7) = wf f
“19 4 =19 0,081
o 2" jteration: Sincen = 2, thenS; is a set of  ws e
dimensionl. When it does not consist of a single =/
point, we considery, with o/ sensibly larger than =y~

« and then solve = U =
o Fig. 8. Extended fairness: solution.
Fsoly = max{F, (x),x € S;;}, (8)
_ _ 2) Remarks:We provide here some remarks drawn
and the unique solution from numerical results.
L L . o Set S7: As previously mentioned, the s&’ is of
u® such thatu® € S, and Fi(u®) = Fsob. dimensionl. It is either:
©)

« a single point (Fig. 9 with =0,1,2,...,70)
Tie-breaking rule:We recall that for each value of the , 3 portion of curve, either continuous (Fig. 7) or not
parameter, the fair family gives a class of solution point. (Fig. 10).

In _this case, there is at moSt_ = 2 equivalent solution Convergence For very large values ofy, the program
points (swn_ﬂar toa _andb of Fig. 1). We hence need ©hecomes unstable, due to accumulation of round-off
set up a "tie-breaking rule”:' ] errors. Hence, in the experiments, we limited the value
If w=(a,b) andwv = (b,a) with a < b are equivalently o¢ ., {5 be less than00, which might be, for special
fair for some value of the parametey then the chosen 51yes of the parameters, not sufficient for reaching the
solution point is: max-min fair point. Yet, as the construction of thefair

o u if U1((0,0)) < U2((0,0)), point considers the max-min fair point of a restricted part

« v otherwise. of the Pareto set, the experiments show that in practice



¢1 =0.9,
¢2 = 0.4,
p1 = 1.5,
po =2,

t = 0.35.

Fig. 9. Locally convex Pareto border.

1P 4715 =21165 | 41 =11,
| $2=2,
H1 =2,
po2 =3,
t = 0.05.

82 5

Us

09 U1
Fig. 10. The setS; can be discontinuous.

Non-convex systems exist in a variety of network-
ing situations. We have exhibited a simple static load
balancing model in which the utility set is not convex.
The system consists of two identical servers (computers)
with their own arrival and own queue. We have assumed
that the delay induced by forwarding a flow is fixed,
and have considered as a utility function the inverse of
the total delay experienced by the flow. We have seen
that in spite of the simplicity of the model, the utility
set can be non-convex and the Pareto border continuous
or not. Through numerical results, we examined the
parameterized fairness objectives in the load balancing
system.

APPENDIX
Proof of Theorem 2 1) (sufficiency) Letv be max-

min fair andw € Y. If w is max-min fair, thenu = v
and soF,(u) = F,(v).

If w is not max-min fair, theru < v. Definem =
min{i € {1,...,n}u; < v;}. Thenw; = v; for i =
1,...,m. Define alsom’ = min{i > m|v,, < v; }. Then

— — — — — — .
Um = Umgl = oo = Upp—1 < Uy @NAV; > Uy, =

the family rapidly converges to the max-min fair poinf”’a weey T

as o grows.

We then want to show thalle such thatvVa >

Tie-breaking rule Finally, we note that in our experi-E’Fa(v) > Flo(a)-

ments, we did not face any situation where we had to

We have:

m— —\1l-aa m-1 , —\ l-«a
make use of the tie-breaking rule. Although in theory . z:l <Ug>1 _ Z (%)1 _

utility-symmetrical fair points exists, we expect them to

be rarely found in practice.

VII. CONCLUSION

1 Um = Um
n v—> 11—«
. Z <_">> — 0. Thereforede; > 1 such
v a—00
m

j=m’

n —\ l—«a
In this paper, we have studied in a general framework thata > ¢ = Z (2) < 1.

a family of points parameterized by a parametavhich
enables us to finely tune the tradeoff between global
efficiency and fairness. Our starting point was a family °

jmme N

u—> 11—«
(_"§> — 400, then3ey > 1 such thata >

Um

originally introduced in the context of fair bandwidth o\ ,
o = < > >m —m+ 1.

allocation. We have shown that this family can be used in o
the much wider range of systems in which the utility set o Since v,, = UTH = ... = U1 < Uny, then

is convex and compact. More precisely, we have shown ™1 —

that in that case the fair family has a unique solution.

v
J !
E - =m —m

Um

In addition, when the utility set is not convex, we have  7=m

shown that there exists a class of equivalent max—rTEn
fair points. As a given optimization function does not
necessarily have a unique extremum, the fair family may_,
have infinitely many solution points and defining fairne

Uy

L e
inally, for all & > max{e;,es}: 2(@) —
=

U_') -« n ?7 -« n v—) -«
. ) (@) e £ (3)
becomes more challenging. We have therefore definedg \Vm Um =1 \Um

j=m’

new fair family, that coincides with the previous onand soF,(v) > F,(u). HenceVu € U not max-min
when the utility functions are supposed convex arfdir, 3¢,Va > ¢, F,(v) > F,(u).

which gives a unique solution for any (compact) utility 2) (necessity) The proof of necessity goes similarly as
set. This research hence opens the road for deeper stidy of sufficiency. Letv € U such that3e; such that

on fairness with general utility sets.

Va > e1,v € S,. Letu € U, u # v. Suppose that <
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u. Then definem andm’ with m = min{i|u; > v;}, [19] Touati, C., E. Altman, and J. Galtier (2001). On fairmess in

andm/ = min{z’]u—m? > m} Then as before, bandwidth allocationinria Research ReporiRR 42609.
[20] Touati, C., E. Altman, and J. Galtier (2002). Utility Based Fair
m—=1 , —\l-a m-1,—\ l-« Bandwidth Allocation. In:Proc. of IASTED NPDPA126-131.
Z (E) — Z <2) [21] Xu, Y and N. Yoshihara (2005). Alternative characterizations
= U, = Um of three bargaining solutions for nonconvex proble@&E/RES

Discussion Paper Serig$lo.126.
—\ 1—a [22] Yaiche, H., R. R. Mazumdar and C. Rosenberg (2000). A
As m > m, then <’U_m>> — oo and therefore game theoretic framework for bandwidth allocation and pricing
Um, in broadband network$EEE/ACM Trans. on NeB(5), 667-677.
AN

[23] zakon, E. (2004). Mathematical Analysis, Vol I, ISBN 1-

11—«
Jes such thatva > e, <U_m>> >m' —m+ 1. As 931705-02-X.
Um

n ﬁ? 11—« n aﬁ 11—«

> (_j>> — 0, then3ez, (_ﬁ) < 1.
. Um , U

j=m’ j=m’

Finally, for any a > max{ey,e2,e3}, Fo(u) > Fu(v),
which contradicty € S,.
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